Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 12.651
Filtrar
1.
PLoS One ; 19(4): e0299771, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38593139

RESUMO

Niger is highly vulnerable to rainfall variability, often with adverse socioeconomic consequences. This study examined observed subseasonal rainfall variability during Niger's monsoon season (May to September). Using k-means clustering of dekadal (ten-day) rainfall, a typology was developed for the annual evolution of the monsoon season. Year-to-year rainfall variability for each of the first few dekads of the season is modest, but the middle, or peak of the rainy season demonstrates large interannual variability. Clustering analysis of annual timeseries for each dekad of the season revealed two types of monsoon progression. The distinction between the two types is strongly dependent on differences during the latter half of the season. For the first and third ten-day periods in August, and the first ten days in September, the two groups of years are more distinct. These results imply that while reliable prediction of the timing of anomalous onsets will be challenging, due to the relatively narrow range of uncertainty historically, there are opportunities for further exploration of dynamic and or statistical predictors or precursors using this typology that could potentially provide better information for decision-makers, especially with respect to agriculture.


Assuntos
Agricultura , Chuva , Níger , Estações do Ano
2.
J Environ Manage ; 357: 120850, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38583384

RESUMO

Climate change and urbanization contribute to the increased frequency of short-duration intense rainstorms. Traditional solutions often involve multiple scenarios for cost-effectiveness comparison, neglecting the rationality of placement conditions. The effective coupling and coordination of the location, number, size, and cost of storage tanks are crucial to addressing this issue. A three-phase approach is proposed to enhance the dynamic link between drainage pipeline and storage tanks in urban high-density built-up areas, integrating Python language, SWMM, the Elitist Non-Dominated Sorting Genetic Algorithm (NSGA-III), and the Analytic Hierarchy Process (AHP) methods. In the first stage, each node within the pipeline network is considered as a potential storage tank location. In the second stage, factors such as the length and diameter of the upstream connecting pipeline, as well as the suitability of the storage tank location, are assessed. In the third stage, the length and diameter of the downstream connecting pipeline node are evaluated. The results show that the 90 overflow nodes (overflow time >0.5h) have been cleared using the three-phase approach with a 50a (duration = 3h) return period as the rainfall scenario, which meets the flooding limitations. After the completion of the three-phase method configuration, the total overflow and SS loads were reduced by 96.45% and 49.30%, respectively, compared to the status quo conditions. These two indicators have decreased by 48.16 and 9.05%, respectively, compared to the first phase (the traditional method of only replacing all overflow nodes with storage tanks). The proposed framework enables decision-makers to evaluate the acceptability and reliability of the optimal management plan, taking into account their preferences and uncertainties.


Assuntos
Inundações , Chuva , Reprodutibilidade dos Testes , Simulação por Computador , Urbanização
3.
Sci Total Environ ; 927: 172205, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38599397

RESUMO

Adaptation measures are essential for reducing the impact of future climate risks on agricultural production systems. The present study focuses on implementing an adaptation strategy to mitigate the impact of future climate change on rainfed maize production in the Eastern Kansas River Basin (EKSRB), an important rainfed maize-producing region in the US Great Plains, which faces potential challenges of future climate risks due to a significant east-to-west aridity gradient. We used a calibrated CERES-Maize crop model to evaluate the impacts of baseline climate conditions (1985-2014), late-term future climate scenarios (under the SSP245 emission pathway and CMIP6 models), and a novel root proliferation adaptation strategy on regional maize yield and rainfall productivity. Changes in the plant root system by increasing the root density could lead to yield benefits, especially under drought conditions. Therefore, we modified the governing equation of soil root growth in the CERES-Maize model to reflect the genetic influence of a maize cultivar to improve root density by proliferation. Under baseline conditions, maize yield values ranged from 6522 to 12,849 kgha-1, with a regional average value of 9270 kgha-1. Projections for the late-term scenario indicate a substantial decline in maize yield (36 % to 50 %) and rainfall productivity (25 % to 42 %). Introducing a hypothetical maize cultivar by employing root proliferation as an adaptation strategy resulted in a 27 % increase in regional maize yield, and a 28 % increase in rainfall productivity compared to the reference cultivar without adaptation. We observed an indication of spatial dependency of maize yield and rainfall productivity on the regional precipitation gradient, with counties towards the east having an implicit advantage over those in the west. These findings offer valuable insights for the US Great Plains maize growers and breeders, guiding strategic decisions to adapt rainfed maize production to the region's impending challenges posed by climate change.


Assuntos
Mudança Climática , Produtos Agrícolas , Raízes de Plantas , Zea mays , Zea mays/crescimento & desenvolvimento , Zea mays/fisiologia , Raízes de Plantas/fisiologia , Raízes de Plantas/crescimento & desenvolvimento , Produtos Agrícolas/crescimento & desenvolvimento , Agricultura/métodos , Produção Agrícola/métodos , Chuva
4.
Sci Total Environ ; 927: 172276, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38583634

RESUMO

The increases in extent and frequency of extreme drought events and increased nitrogen (N) deposition due to global change are expected to have profound impacts on carbon cycling in semi-arid grasslands. However, how ecosystem CO2 exchange processes respond to different drought scenarios individually and interactively with N addition remains uncertain. In this study, we experimentally explored the effects of different drought scenarios (early season extreme drought, 50 % reduction in precipitation amount, and 50 % reduction in precipitation events) and N addition on net ecosystem CO2 exchange (NEE), ecosystem respiration (ER), and gross ecosystem productivity (GEP) over three growing seasons (2019-2021) in a semi-arid grassland in northern China. The growing-season ecosystem carbon fluxes in response to drought and N addition were influenced by inter-annual precipitation changes, with 2019 as a normal precipitation year, and 2020 and 2021 as wet years. Early season extreme drought stimulated NEE by reducing ER. 50 % reduction in precipitation amount decreased ER and GEP consistently in three years, but only significantly suppressed NEE in 2019. 50 % reduction in precipitation events stimulated NEE. Nitrogen addition stimulated NEE, ER, and GEP, but only significantly in wet years. The structural equation models showed that changes in carbon fluxes were regulated by soil moisture, soil temperature, microbial biomass nitrogen (MBN), and the key plant functional traits. Decreased community-weighted means of specific leaf area (CWMSLA) was closely related to the reduced ER and GEP under early season extreme drought and 50 % reduction in precipitation amount. While increased community-weighted means of plant height (CWMPH) largely accounted for the stimulated ER and GEP under 50 % reduction in precipitation events. Our study stresses the distinct effects of different drought scenarios and N enrichment on carbon fluxes, and highlights the importance of soil traits and the key plant traits in determining carbon exchange in this water-limited ecosystem.


Assuntos
Ciclo do Carbono , Secas , Pradaria , Nitrogênio , Nitrogênio/análise , China , Chuva , Mudança Climática , Ecossistema , Carbono/metabolismo , Estações do Ano
5.
Nat Commun ; 15(1): 3056, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38632260

RESUMO

Microbial activity in drylands tends to be confined to rare and short periods of rain. Rapid growth should be key to the maintenance of ecosystem processes in such narrow activity windows, if desiccation and rehydration cause widespread cell death due to osmotic stress. Here, simulating rain with 2H2O followed by single-cell NanoSIMS, we show that biocrust microbial communities in the Negev Desert are characterized by limited productivity, with median replication times of 6 to 19 days and restricted number of days allowing growth. Genome-resolved metatranscriptomics reveals that nearly all microbial populations resuscitate within minutes after simulated rain, independent of taxonomy, and invest their activity into repair and energy generation. Together, our data reveal a community that makes optimal use of short activity phases by fast and universal resuscitation enabling the maintenance of key ecosystem functions. We conclude that desert biocrust communities are highly adapted to surviving rapid changes in soil moisture and solute concentrations, resulting in high persistence that balances limited productivity.


Assuntos
Ecossistema , Microbiota , Clima Desértico , Microbiologia do Solo , Chuva , Solo
6.
Water Sci Technol ; 89(6): 1512-1525, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38557715

RESUMO

This study aims to investigate the differences in intra-urban catchments with different characteristics through real-time wastewater monitoring. Monitoring stations were installed in three neighbourhoods of Barcelona to measure flow, total chemical oxygen demand (COD), pH, conductivity, temperature, and bisulfide (HS-) for 1 year. Typical wastewater profiles were obtained for weekdays, weekends, and holidays in the summer and winter seasons. The results reveal differences in waking up times and evening routines, commuting behaviour during weekends and holidays, and water consumption. The pollutant profiles contribute to a better understanding of pollution generation in households and catchment activities. Flows and COD correlate well at all stations, but there are differences in conductivity and HS- at the station level. The article concludes by discussing the operational experience of the monitoring stations.


Assuntos
Monitoramento Ambiental , Águas Residuárias , Monitoramento Ambiental/métodos , Esgotos/análise , Chuva , Análise da Demanda Biológica de Oxigênio , Cidades
7.
Ying Yong Sheng Tai Xue Bao ; 35(3): 648-658, 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38646752

RESUMO

Carbon wet deposition and river carbon output in river basins are important components of global carbon cycle. The assessment of both properties is of great significance for regional carbon budget. However, research on these topics in high-latitude permafrost regions in China is still lacking. We conducted dynamic monitoring of carbon wet deposition and carbon output in the river from May 28th to October 30th, 2022, in Laoyeling watershed, a typical forested watershed in the Da Xing'an Mountains permafrost region. We analyzed the variations of carbon component concentrations and fluxes in precipitation and river water, and estimated the contribution of carbon wet deposition to carbon output in the watershed. The results showed that wet deposition fluxes of dissolved organic carbon (DOC), dissolved inorganic carbon (DIC), and total dissolved carbon (TDC) in the Laoyeling watershed were 1354.86, 684.59, and 2039.45 kg·km-2, respectively. The fluxes of DOC, DIC, TDC, particulate organic carbon (POC), particulate inorganic carbon (PIC), and total carbon (TC) in the river were 601.75, 1977.30, 2579.05, 125.13, 21.99, and 2726.17 kg·km-2, respectively. The contribution of TDC wet deposition to the river TDC output was 9941.89 kg, accounting for 17.6% of total output. The DIC concentration in the river showed significant seasonal differences, with increased runoff resulting from precipitation leading to a decrease in DIC concentration in the river and showing a clear dilution effect, while the concentrations of DOC, POC, and PIC increased, mainly due to erosion effect. In conclusion, carbon wet deposition flux in the Laoyeling watershed was mainly determined by precipitation, and its contribution to river carbon output was relatively small compared to other factor. Runoff was the dominant factor affecting river carbon output. The results would provide important insights into carbon cycling and carbon budget balance in permafrost regions under climate change.


Assuntos
Carbono , Monitoramento Ambiental , Florestas , Pergelissolo , Rios , China , Rios/química , Carbono/análise , Ciclo do Carbono , Chuva/química , Ecossistema
8.
Ying Yong Sheng Tai Xue Bao ; 35(3): 749-758, 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38646763

RESUMO

With the economic development, a large number of engineering accumulation bodies with Lou soil as the main soil type were produced in Guanzhong area, Northwest China. We examined the characteristics of runoff and sediment yield of Lou soil accumulation bodies with earth (gravel content 0%) and earth-rock (gravel content 30%) under different rainfall intensities (1.0, 1.5, 2.0, 2.5 mm·min-1) and different slope lengths (3, 5, 6.5, 12 m) by the simulating rainfall method. The results showed that runoff rate was relatively stable when rainfall intensity was 1.0-1.5 mm·min-1, while runoff rate fluctuated obviously when rainfall intensity was 2.0-2.5 mm·min-1. The average runoff rate varied significantly across different rainfall intensities on the same slopes, and the difference of average runoff rate of the two slopes was significantly increased with rainfall intensity. Under the same rainfall intensity, the difference in runoff rate between the slope lengths of the earth-rock slope was more obvious than that of the earth slope. When the slope length was 3-6.5 m, flow velocity increased rapidly at first and then increased slowly or tended to be stable. When the slope length was 12 m, flow velocity increased significantly. In general, with the increases of rainfall intensity, inhibition effect of gravel on the average flow velocity was enhanced. When rainfall intensity was 2.5 mm·min-1, the maximum reduction in the average flow velocity of earth-rock slope was 61.5% lower than that of earth slope. When rainfall intensity was less than 2.0 mm·min-1, sediment yield rate showed a trend of gradual decline or stable change, while that under the other rainfall intensities showed a trend of rapid decline and then fluctuated sharply. The greater the rainfall intensity, the more obvious the fluctuation. There was a significant positive correlation between the average sediment yield rate and runoff parameters, with the runoff rate showing the best fitting effect. Among the factors, slope length had the highest contribution to runoff velocity and rainfall erosion, which was 51.8% and 35.5%, respectively. This study can provide scientific basis for soil and water erosion control of engineering accumulation in Lou soil areas.


Assuntos
Sedimentos Geológicos , Chuva , Solo , Movimentos da Água , China , Solo/química , Ecossistema , Monitoramento Ambiental/métodos , Gravitação , Engenharia
9.
Glob Chang Biol ; 30(3): e17235, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38497525

RESUMO

The accelerating pace of climate change has led to unprecedented shifts in surface temperature and precipitation patterns worldwide, with African savannas being among the most vulnerable regions. Understanding the impacts of these extreme changes on ecosystem health, functioning and stability is crucial. This paper focuses on the detection of breakpoints, indicative of shifts in ecosystem functioning, while also determining relevant ecosystem characteristics and climatic drivers that increase susceptibility to these shifts within the semi-arid to arid savanna biome. Utilising a remote sensing change detection approach and rain use efficiency (RaUE) as a proxy for ecosystem functioning, spatial and temporal patterns of breakpoints in the savanna biome were identified. We then employed a novel combination of survival analysis and remote sensing time series analysis to compare ecosystem characteristics and climatic drivers in areas experiencing breakpoints versus areas with stable ecosystem functioning. Key ecosystem factors increasing savanna breakpoint susceptibility were identified, namely higher soil sand content, flatter terrain and a cooler long-term mean temperature during the wet summer season. Moreover, the primary driver of changes in ecosystem functioning in arid savannas, as opposed to wetter tropical savannas, was found to be the increased frequency and severity of rainfall events, rather than drought pressures. This research highlights the importance of incorporating wetness severity metrics alongside drought metrics to comprehensively understand climate-ecosystem interactions leading to abrupt shifts in ecosystem functioning in arid biomes. The findings also emphasise the need to consider the underlying ecosystem characteristics, including soil, topography and vegetation composition, in assessing ecosystem responses to climate change. While this research primarily concentrated on the southern African savanna as a case study, the methodological robustness of this approach enables its application to diverse arid and semi-arid biomes for the assessment of climate-ecosystem interactions that contribute to abrupt shifts.


Assuntos
Ecossistema , Pradaria , Chuva , Estações do Ano , Solo
10.
Environ Sci Technol ; 58(12): 5500-5511, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38483320

RESUMO

Stormwater rapidly moves trace organic contaminants (TrOCs) from the built environment to the aquatic environment. Bioretention cells reduce loadings of some TrOCs, but they struggle with hydrophilic compounds. Herein, we assessed the potential to enhance TrOC removal via changes in bioretention system design by simulating the fate of seven high-priority stormwater TrOCs (e.g., PFOA, 6PPD-quinone, PAHs) with log KOC values between -1.5 and 6.74 in a bioretention cell. We evaluated eight design and management interventions for three illustrative use cases representing a highway, a residential area, and an airport. We suggest two metrics of performance: mass advected to the sewer network, which poses an acute risk to aquatic ecosystems, and total mass advected from the system, which poses a longer-term risk for persistent compounds. The optimized designs for each use case reduced effluent loadings of all but the most polar compound (PFOA) to <5% of influent mass. Our results suggest that having the largest possible system area allowed bioretention systems to provide benefits during larger events, which improved performance for all compounds. To improve performance for the most hydrophilic TrOCs, an amendment like biochar was necessary; field-scale research is needed to confirm this result. Our results showed that changing the design of bioretention systems can allow them to effectively capture TrOCs with a wide range of physicochemical properties, protecting human health and aquatic species from chemical impacts.


Assuntos
Ecossistema , Compostos Orgânicos , Humanos , Chuva
11.
Environ Monit Assess ; 196(4): 372, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38489074

RESUMO

The increasing intensity and frequency of rainfall events, a critical aspect of climate change, pose significant challenges in the construction of intensity-duration-frequency (IDF) curves for climate projection. These curves are crucial for infrastructure development, but the non-stationarity of extreme rainfall raises concerns about their adequacy under future climate conditions. This research addresses these challenges by investigating the reasons behind the IPCC climate report's evidence about the validity that rainfall follows the Clausius-Clapeyron (CC) relationship, which suggests a 7% increase in precipitation per 1 °C increase in temperature. Our study provides guidelines for adjusting IDF curves in the future, considering both current and future climates. We calculate extreme precipitation changes and scaling factors for small urban catchments in Barranquilla, Colombia, a tropical region, using the bootstrapping method. This reveals the occurrence of a sub-CC relationship, suggesting that the generalized 7% figure may not be universally applicable. In contrast, our comparative analysis with Illinois, USA, an inland city in the north temperate zone, shows adherence to the CC relationship. This emphasizes the need for local parameter calculations rather than relying solely on the generalized 7% figure.


Assuntos
Mudança Climática , Chuva , Monitoramento Ambiental/métodos , Cidades , Temperatura
12.
Sci Total Environ ; 926: 171803, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38508264

RESUMO

Urban stormwater is an alternative water source used to mitigate water resource shortages, and ensuring the safety of stormwater reuse is essential. An in-depth understanding of both individual pollutant concentrations/loads in stormwater and holistic stormwater quality can be used to comprehensively evaluate how safely stormwater can be reused. The toxicity test takes all pollutants present in water samples into account, and the results reflect the integrated effect of these pollutants. In this study, the influence of urban stormwater sourced from different land uses on microalgae (Chlorella pyrenoidosa) and the possible toxicity mechanisms were investigated. The results showed that urban stormwater, particularly residential road stormwater, significantly inhibited microalgal growth. The chlorophyll contents of microalgae exposed to residential road stormwater were relatively lower, while the corresponding values were relatively higher for microalgae exposed to grassland road stormwater. Additionally, the antioxidant-related metabolism of microalgae could be dysregulated due to exposure to urban stormwater. A possible toxicity mechanism is that urban stormwater influences metabolic pathways related to chlorophyll synthesis and further hinders photosynthesis and hence microalgal growth. To resist oxidative stress and maintain regular microalgal cell activities, the ribosome metabolism pathway was upregulated. The research results contribute to elucidating the toxicity effects of urban stormwater and hence provide useful insight for ensuring the safety of stormwater reuse. It is also worth noting that the study outcomes can only represent the influence of land use on stormwater toxicity, while the impacts of other factors (particularly rainfall-runoff characteristics) have not been considered. Therefore, the consideration of all influential factors of stormwater is strongly recommended to generate more robust results in the future and provide more effective guidance for real practices related to stormwater reuse safety.


Assuntos
Chlorella , Poluentes Ambientais , Poluentes Químicos da Água , Monitoramento Ambiental/métodos , Poluentes Químicos da Água/toxicidade , Poluentes Químicos da Água/análise , Chuva , Poluentes Ambientais/toxicidade , Água , Clorofila
13.
J Environ Manage ; 356: 120548, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38492420

RESUMO

Urban stormwater runoff is a significant source of nutrient pollution that is very costly to treat. Water quality trading (WQT) is a market-based strategy that can be used to lower the costs associated with meeting stormwater quality regulations. While many WQT programs have experienced low participation, Virginia's program has seen high participation due to the inclusion of land developers and other regulated stormwater dischargers. However, the extent to which WQT is used as a compliance option by regulated stormwater dischargers is not well understood, particularly when compared with the adoption of traditional compliance options. To address this knowledge gap, we collated a novel dataset comprising site characteristics and stormwater compliance methods for all development projects in the City of Roanoke, Virginia from December 2015 to March 2022. We analyzed this dataset to characterize the adoption of nutrient offset credits and other compliance methods being used, including best management practices (BMPs) and improved land covers associated with reduced nutrient export. Results show that credits are the preferred compliance option in Roanoke and were used as the only treatment compliance method for 59% of projects with treatment requirements. Projects using credits corresponded with a lower median disturbed area (1.36 acres) and lower median nutrient load reduction requirement (0.69 pounds of total phosphorus per year) compared with other compliance methods. Furthermore, we found that 58% of the projects that used credits achieved stormwater quantity compliance using methods other than implementing stormwater control devices. By mapping buyers and sellers of credits, we found that all credit sellers are downstream of the development projects. We discuss how this downstream trading could be a cause for concern, as part of a larger discussion of the advantages of tracking stormwater compliance methods, drawing on Roanoke as a case study.


Assuntos
Poluentes Químicos da Água , Qualidade da Água , Virginia , Chuva , Cidades , Fósforo/análise , Movimentos da Água , Monitoramento Ambiental/métodos
14.
Environ Pollut ; 347: 123766, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38492751

RESUMO

Particulate materials arising from road-deposited sediments (RDS) are an essential target for the control and management of surface runoff pollution. However, the heterogeneity of urban spaces hinders the identification and quantification of particulate pollution, which is challenging when formulating precise control measures. To elucidate the factors that drive particulate pollution in heterogeneous urban spaces, the accumulation of RDS on dry days and the total suspended solids during six natural rainfall events were investigated across three urban-rural spatial units (central urban, central suburban, and remote suburban). The underlying surface type (asphalt or cement roads) and particle size composition jointly determined the spatial heterogeneity in the static accumulation and dynamic output loads of RDS during rainfall. These two factors explained 59.6% and 18.9% of the spatial heterogeneity, respectively, according to principal component analysis. A novel CPSI exponential wash-off equation that incorporates particle size composition and underlying surface type was applied. It precisely described the spatial heterogeneity of RDS wash-off loads, the estimated values exhibiting event mean concentration errors of 10.8-18.2%. When coupled with the M(V) curve, this CPSI exponential wash-off equation more precisely split the initial volume of runoff: a lower total volume (17.6-38.0%) was shown to carry a higher proportion of the load (70.0-93.7%) compared to the traditional coupled exponential wash-off equation (volume: 31.6-49.0%, load: 37-90%). This study provides a new approach to characterizing RDS wash-off processes and splitting initial runoff in heterogeneous spaces.


Assuntos
Chuva , Poluentes Químicos da Água , Movimentos da Água , Monitoramento Ambiental , Poluição Ambiental/análise , Tamanho da Partícula , Poeira/análise , Poluentes Químicos da Água/análise
15.
J Environ Manage ; 356: 120583, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38531132

RESUMO

Stormwater Control Measures (SCMs) contribute to reducing micropollutant emissions from separate sewer systems. SCM planning and design are often performed by looking at the hydrological performance. Assessment of pollutant removal and the ability to comply with discharge concentration limits is often simplified due to a lack of data and limited monitoring resources. This study analyses the impact of using different time resolutions of input stormwater concentrations when assessing the compliance of SCMs against water quality standards. The behaviour of three indicator micropollutants (MP - Copper, Diuron, Benzo[a]pyrene) was assessed in four SCM archetypes, which were defined to represent typical SCM removal processes. High resolution MP data were extrapolated by using high resolution (2 min) measurements of TSS over a long period (343 events). The compliance assessment showed that high resolution input concentrations can result in a different level of compliance with water quality standards, especially when discharged concentrations are close to the limit values. This study underlines the importance of considering the high temporal variability of stormwater micropollutants when planning and designing SCMs to identify the most effective solutions for stormwater pollution management and to ensure a thorough consideration of all the environmental implications.


Assuntos
Monitoramento Ambiental , Poluentes Químicos da Água , Baías , Cobre/análise , Qualidade da Água , Chuva , Poluentes Químicos da Água/análise , Movimentos da Água
16.
Funct Plant Biol ; 512024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38493797

RESUMO

Wheat (Triticum aestivum L.) is the most extensively cultivated cereal crop in the world; however, its growth and development are affected by different types of biotic and abiotic stress conditions. The aim of this study was to assess the physico-chemical diversity in different wheat genotypes under rain-fed conditions. Principle component analysis (PCA) showed that significant variation for different components contributed 77.87% of total variability among all genotypes. In the scree plot, the first two PCs (PC1=44.75%, PC2=14.28%) had significant differences for numerous agronomic traits. The scatter biplot depicted eight genotypes (Zardana, NR-462, D-97, BARS-2009 (a check), NR-481, Tarnab-73, NR-489 and Pirsabak-91) with high diversity (variation ~90%) for different morphological traits, identifiable as they were located further away from the origin than other genotypes. Factor analysis of loading factors among wheat genotypes across different morpho-physiological traits also showed significant diversity for positive and negative loads. In cluster analysis, genotypes such as BWP-97, BARS-2009, NR-489, NR-448 and Pak. 13 were outliers, indicating significant diversity among all genotypes for different agronomic traits. Biochemical analysis showed maximum values for antioxidant activity, total phenolic content, and total flavonoid content in lines NR-485 (93.76%), NR-489 (3.55mg gallic acid equivalent (GAE)/g), and the variety Suleman-96 (3.45mg quercetin equivalent (QE)/g), respectively. This study provides new insights for understanding the diversity of different wheat genotypes under rain-fed conditions, and the selected genotypes can be evaluated for further breeding programs.


Assuntos
Melhoramento Vegetal , Triticum , Triticum/genética , Genótipo , Fenótipo , Chuva
17.
Sci Total Environ ; 922: 171302, 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38428607

RESUMO

Green roofs have been increasingly used to improve stormwater management, but poor vegetation performance on roof systems, varying with vegetation type, can degrade discharge quality. Biochar has been suggested as an effective substrate additive for green roofs to improve plant performance and discharge quality. However, research on the effects of biochar and vegetation on discharge quality in the long term is lacking and the underlying mechanisms involved are unclear. We examined the effects of biochar amendment and vegetation on discharge quality on organic-substrate green roofs with pre-grown sedum mats and direct-seeded native plants for three years and investigated the key factors influencing discharge quality. Sedum mats reduced the leaching of nutrients and particulate matter by 6-64% relative to native plants, largely due to the higher initial vegetation cover of the former. Biochar addition to sedum mat green roofs resulted in the best integrated water quality due to enhanced plant cover and sorption effects. Structural equation modeling revealed that nutrient leaching was primarily influenced by rainfall depth, time, vegetation cover, and substrate pH. Although biochar-amended sedum mats showed better discharge quality from organic-substrate green roofs, additional ecosystem services may be provided by native plants, suggesting future research to optimize plant composition and cover and biochar properties for sustainable green roofs.


Assuntos
Carvão Vegetal , Sedum , Qualidade da Água , Ecossistema , Conservação dos Recursos Naturais/métodos , Chuva , Plantas
18.
Sci Total Environ ; 927: 171946, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38527551

RESUMO

Argentina has a relevant international role as a producer of agricultural commodities. Buenos Aires is the province with the largest cultivated area of cereals and oilseeds of the country. Rainfed crops depend exclusively on green water, meaning a comparative advantage for Buenos Aires province. The green virtual water content in the crops produced in Buenos Aires has implications for water allocation at international level. A great amount of countries depends on the Argentinean rainfed agriculture. Therefore, it is important to understand the effects of climate variations on Argentinean crop production at local level and the role of rainfed crops in regional and international trade. We analysed the temporal and territorial variations of crops green water demand in a climatic variability context and their influence on the water footprint. The green water footprint of the main crops of Buenos Aires was assessed, including soybeans, maize, sunflower, wheat and barley, in different climatic conditions: for the period 2008-2018, which include a dry year, a humid year and an ordinary year. A dataset about the green water footprint at municipality level was provided, and the results were presented on maps for each crop and for the different climatic conditions. The relevance of green water of main crops in the world water-dependent supply chains was shown. This comprehensive green water footprint assessment provides a useful database for researchers, companies and policy makers in Argentina and beyond.


Assuntos
Agricultura , Produtos Agrícolas , Argentina , Mudança Climática , Clima , Abastecimento de Água/estatística & dados numéricos , Chuva
19.
Environ Pollut ; 348: 123767, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38492753

RESUMO

Sustainable drainage system (SuDS) for stormwater reclamation has the potential to alleviate the water scarcity and environmental pollution issues. Laboratory studies have demonstrated that the capacity of SuDS to treat stormwater can be improved by integrating biochar and compost in the filter media, whereas their performance in scaled-up applications is less reported. This study examines the effectiveness of a pilot-scale SuDS, bioswale followed by bioretention, amended with wood waste biochar (1, 2, and 4 wt.%) and food waste compost (2 and 4 wt.%) to simultaneously remove multiple pollutants including nutrients, heavy metals, and trace organics from the simulated stormwater. Our results confirmed that SuDS modified with both biochar (2 wt.%) and compost (2 wt.%) displayed superior water quality improvement. The system exhibited high removal efficiency (> 70%) for total phosphorus and major metal species including Ni, Pb, Cd, Cr, Cu, and Zn. Total suspended solids concentration was approaching the detection limit in the effluent, thereby confirming its capability to reduce turbidity and particle-associated pollutants from stormwater. Co-application of biochar and compost also moderately immobilized trace organic contaminants such as 2,4-dichlorophenoxyacetic acid, diuron, and atrazine at field-relevant concentrations. Moreover, the soil amendments amplified the activities of enzymes including ß-D-cellobiosidase and urease, suggesting that the improved soil conditions and health of microbial communities could possibly increase phyto and bioremediation of contaminants accumulated in the filter media. Overall, our pilot-scale demonstration confirmed that the co-application of biochar and compost in SuDS can provide a variety of benefits for soil/plant health and water quality.


Assuntos
Compostagem , Poluentes Ambientais , Metais Pesados , Eliminação de Resíduos , Poluentes do Solo , Purificação da Água , 60659 , Madeira/química , Alimentos , Chuva , Abastecimento de Água , Carvão Vegetal , Solo , Poluentes do Solo/análise
20.
Parasit Vectors ; 17(1): 110, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38449052

RESUMO

BACKGROUND: The occurrence of higher winter temperatures in Brazilian areas with tropical and highland climates may result in a fifth peak of tick populations during winter in addition to the four generations previously described. Therefore, a strategic control protocol was developed with treatments in two seasons with the objective of controlling the generations of ticks that occur in spring/summer and those that occur in autumn/winter. METHODS: The study was conducted in Mato Grosso do Sul, Brazil, from the beginning of the rainy season, November 2020, to October 2021. In a randomized block design, 36 calves were distributed into three groups: (i) negative control; (ii) traditional strategic control in one season (SC1S), at the beginning of the rainy season; and (iii) strategic control in two seasons (SC2S), at the beginning and end of the rainy season. The SC1S strategic control group was treated on day 0, November 2020, and twice more with intervals of 42 days. The SC2S group received three more treatments beginning on day 182, May 2021, with intervals of 42 days. All treatments consisted of 5% fluralaner (Exzolt® 5%) delivered via a pour-on dose of 1 mL/20 kg body weight. Counts of semi-engorged female ticks were performed on day 3 and every 14 days thereafter, and the animals were weighed at the same time. RESULTS: Fluralaner showed a mean efficacy of more than 95% up to day 294. The two treated groups showed a decrease (P < 0.05) in the average number of ticks on day 3. In the SC2S group, the means were close or equal to zero throughout the study, while in the SC1S group, the means did not differ (P > 0.05) from those of the control group from day 231 onward. The final mean weight gain of each group was 76.40 kg, 98.63 kg, and 115.38 kg for the control, SC1S, and SC2S groups, respectively, differing (P < 0.05) from each other. CONCLUSIONS: Therefore, three applications of fluralaner, with one application every 42 days from the beginning of the rainy season in the middle spring, resulted in effective tick control for 224 days. When three additional treatments were given in autumn/winter with intervals of 42 days between applications, tick counts were reduced throughout the year. This strategic control approach may be indicated in years with climatic conditions that allow that population peaks are expected to occur in the autumn/winter period.


Assuntos
Rhipicephalus , Feminino , Bovinos , Animais , Isoxazóis/farmacologia , Brasil , Chuva
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...